Se infectious agents may be cleared after the acute infection. Nonetheless, these agents could possibly induce carcinogenesis through the activation of a chronic inflammatory response [53]. Only one study of the association PF-299804 site between prostate cancer and OAS1 was done on a smaller sample size and 3 SNPs different from our CPI-455 web selection where an association with rs2660 was found [54]. 18334597 COX-2 encodes for the enzyme cyclooxygenase-2 (COX-2). COX-2 converts arachidonic acid to prostaglandin H2, which is a precursor for other tissue-specific inflammatory molecules (prostanoids). COX-2 was found to be overexpressed in prostate cancer tissue compared to the surrounding normal prostate tissue [55,56,57]. The association of genetic variants with prostate cancer risk has also been outlined in previous studies, including in the same dataset [27,28,29,30,58]. 17460038 However, reports on the association between elevated expression of COX-2 in prostate cancer tissues and high Gleason score and recurrence of the disease have mixed results [59,60,61]. Our results are concordant with those reported by Zheng et al. [62] who studied 9,275 SNPs in 1,086 inflammation genes using 200 familial cases and 200 controls of Swedish origin. They observed a significant enrichment in the number of nominal associations observed, suggesting the role of multiple genes with modest effects. However, by using the SKAT, our study is the first analysis of SNP sets pooled across genes and sub-pathways within the innate immunity and inflammation pathway. None of the SNPs or genes included in our study was reported in any of the genome-wide association studies of prostate cancer listed in the Catalog of Genome-Wide Association studies [63]. Nonetheless, our study has several limitations. First, the limited sample size, and thus limited power, could explain why the association with the whole set of genes is significant while none of the associations with the sub-pathways, genes, or SNPs are significant after correcting for multiple testing. With this sample, the minimum (or maximum for protective) odds ratio detectable with a power of 80 varies between 1.5 (or 0.67) and 2.19 (or 0.46) when the MAF varies between 0.5 and 0.05. Moreover, the limited sample size does not allow evaluating potential heterogeneous effects of variants by ethnicity or other covariates. Second, although a more stringent selection of cases would better describe the role of the innate immunity and inflammation pathway in advanced prostate cancer, it would decrease the sample size nd consequently the power?drastically. Third, our selection of SNPs cannot exclude the possibility for rare functional variants in these candidate genes to play a role in advanced prostate cancer risk.Innate Immunity Inflammation in Prostate CancerThird, although the SKAT method provides an ideal framework to test for association with sets of potentially correlated SNPs, it does not measure the increase in risk associated with variants in the set of SNPs. In conclusion, this study furthers research into prostate cancer genetics by studying SNPs in a candidate pathway at multiple levels of information: whole pathway, sub-pathways, genes, and SNPs. Our results suggest that although it may not be central in the etiology of advanced prostate cancer, the innate immunity and inflammation pathway could play a role in prostate cancer through different genetic variants.allele frequency; PHardy-Weinberg: Hardy-Weinberg proportion adequacy test (chi-squ.Se infectious agents may be cleared after the acute infection. Nonetheless, these agents could possibly induce carcinogenesis through the activation of a chronic inflammatory response [53]. Only one study of the association between prostate cancer and OAS1 was done on a smaller sample size and 3 SNPs different from our selection where an association with rs2660 was found [54]. 18334597 COX-2 encodes for the enzyme cyclooxygenase-2 (COX-2). COX-2 converts arachidonic acid to prostaglandin H2, which is a precursor for other tissue-specific inflammatory molecules (prostanoids). COX-2 was found to be overexpressed in prostate cancer tissue compared to the surrounding normal prostate tissue [55,56,57]. The association of genetic variants with prostate cancer risk has also been outlined in previous studies, including in the same dataset [27,28,29,30,58]. 17460038 However, reports on the association between elevated expression of COX-2 in prostate cancer tissues and high Gleason score and recurrence of the disease have mixed results [59,60,61]. Our results are concordant with those reported by Zheng et al. [62] who studied 9,275 SNPs in 1,086 inflammation genes using 200 familial cases and 200 controls of Swedish origin. They observed a significant enrichment in the number of nominal associations observed, suggesting the role of multiple genes with modest effects. However, by using the SKAT, our study is the first analysis of SNP sets pooled across genes and sub-pathways within the innate immunity and inflammation pathway. None of the SNPs or genes included in our study was reported in any of the genome-wide association studies of prostate cancer listed in the Catalog of Genome-Wide Association studies [63]. Nonetheless, our study has several limitations. First, the limited sample size, and thus limited power, could explain why the association with the whole set of genes is significant while none of the associations with the sub-pathways, genes, or SNPs are significant after correcting for multiple testing. With this sample, the minimum (or maximum for protective) odds ratio detectable with a power of 80 varies between 1.5 (or 0.67) and 2.19 (or 0.46) when the MAF varies between 0.5 and 0.05. Moreover, the limited sample size does not allow evaluating potential heterogeneous effects of variants by ethnicity or other covariates. Second, although a more stringent selection of cases would better describe the role of the innate immunity and inflammation pathway in advanced prostate cancer, it would decrease the sample size nd consequently the power?drastically. Third, our selection of SNPs cannot exclude the possibility for rare functional variants in these candidate genes to play a role in advanced prostate cancer risk.Innate Immunity Inflammation in Prostate CancerThird, although the SKAT method provides an ideal framework to test for association with sets of potentially correlated SNPs, it does not measure the increase in risk associated with variants in the set of SNPs. In conclusion, this study furthers research into prostate cancer genetics by studying SNPs in a candidate pathway at multiple levels of information: whole pathway, sub-pathways, genes, and SNPs. Our results suggest that although it may not be central in the etiology of advanced prostate cancer, the innate immunity and inflammation pathway could play a role in prostate cancer through different genetic variants.allele frequency; PHardy-Weinberg: Hardy-Weinberg proportion adequacy test (chi-squ.