Thylthiazol2-yl)-2,5-diphenyltetrazolium bromide; NC: Negative control; NEAA: nonessential amino acids; nt: Nucleotide; OSKM: Oct4, Sox2, Klf4, and c-Myc; PCR: Polymerase chain reaction; ROS: Reactive oxygen species;Nguyen et al. Stem Cell Research Therapy (2017) 8:Page 14 ofPublisher’s NoteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Author details 1 Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, Sungai Long, Kajang, Selangor DE, Malaysia. 2Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor DE, Malaysia. 3Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long, Kajang, Selangor DE, Malaysia. 4Department of Animal Science, Chinese Culture University, Taipei, Taiwan. 5Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan. 6 Singapore BioImaging Consortium A*Star, Singapore, Singapore. 7Duke-NUS Graduate Medical School, Singapore, Singapore. 8Tissue Engineering Group, National Orthopaedic Centre of Excellence for Research and Learning, Kuala Lumpur, Malaysia. 9Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. Received: 21 March 2017 Revised: 29 August 2017 Accepted: 12 SeptemberReferences 1. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663?6. 2. Buganim Y, Faddah DA, Jaenisch R. Mechanisms and models of somatic cell reprogramming. Nat Rev Gene. 2013;14:427?9. 3. David L, Polo JM. Phases of reprogramming. Stem Cell Res. 2014;12:754?1. 4. Plath K, Lowry WE. Progress in understanding reprogramming to the induced pluripotent state. Nat Rev Genet. 2011;12:253?5. 5. Leonardo TR, Schultheisz HL, Loring JF, Laurent LC. The functions of I-CBP112 biological activity microRNAs in pluripotency and reprogramming. Nat Cell Biol. 2012;14:1114?1. 6. Stadler B, Ivanovska I, Mehta K, Song S, Nelson A, et al. Characterization of microRNAs involved in embryonic stem cell states. Stem Cells Dev. 2010;19:935?0. 7. Nguyen PN, Huang CJ, Sugii S, Cheong SK, Choo KB. Selective activation of miRNAs of the primate-specific chromosome 19 miRNA cluster (C19MC) in cancer and stem cells and possible contribution to regulation of apoptosis. J Biomed Sci. 2017;24:20. 8. Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell. 2011;8:633?. 9. Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell. 2011;8:376?8. 10. Hu S, Wilson KD, Ghosh Z, Han PubMed ID:http://www.ncbi.nlm.nih.gov/pubmed/27465830 L, Wang Y, et al. MicroRNA-302 increases reprogramming efficiency via repression of NR2F2. Stem Cells. 2013;31:259?8. 11. He X, Cao Y, Wang L, Han Y, Zhong X, et al. Human fibroblast reprogramming to pluripotent stem cells regulated by the miR19a/b-PTEN axis. PLoS One. 2014;9, e95213. 12. Wang G, Guo X, Hong W, Liu Q, Wei T, et al. Critical regulation of miR-200/ZEB2 pathway in Oct4/Sox2-induced mesenchymal-to-epithelial transition and induced pluripotent stem cell generation. Proc Natl Acad Sci U S A. 2013;110:2858?3. 13. Wang Y, Melton C, Li YP, Shenoy A, Zhang XX, et al. miR-294/miR-302 promotes proliferation, suppresses G1-S restr.